generalelectric:

Inspired by a young man, GE engineer Lyman Connor created an affordable bionic hand using only a 3D printer, his computer, and his technical skills. Watch his story here. 

generalelectric:

Inspired by a young man, GE engineer Lyman Connor created an affordable bionic hand using only a 3D printer, his computer, and his technical skills. Watch his story here

neurosciencestuff:

The Dopamine Transporter
Recent published research in the Journal of Clinical Investigation  demonstrates how changes in dopamine signaling and dopamine transporter function are linked to neurological and psychiatric diseases, including early-onset Parkinsonism and attention deficit hyperactivity disorder (ADHD).
"The present findings should provide a critical basis for further exploration of how dopamine dysfunction and altered dopamine transporter function contribute to brain disorders" said Michelle Sahai, a postdoctoral associate at the Weill Cornell Medical College of Cornell University, adding "it also contributes to research efforts developing new ways to help the millions of people suffering."
Sahai is also studying the effects of cocaine, a widely abused substance with psychostimulant effects that targets the dopamine transporter. She and her colleagues expect to release these specific findings within the next year.
Losing Control
Dopamine is a neurotransmitter that plays an important role in our cognitive, emotional, and behavioral functioning. When activated from outside stimuli, nerve cells in the brain release dopamine, causing a chain reaction that releases even more of this chemical messenger.
To ensure that this doesn’t result in an infinite loop of dopamine production, a protein called the dopamine transporter reabsorbs the dopamine back into the cell to terminate the process. As dopamine binds to its transporter, it is returned to the nerve cells for future use.
However, cocaine and other drugs like amphetamine, completely hijack this well-balanced system.
"When cocaine enters the bloodstream, it does not allow dopamine to bind to its transporter, which results in a rapid increase in dopamine levels," Sahai explained.
The competitive binding and subsequent excess dopamine is what causes euphoria, increased energy, and alertness. It also contributes to drug abuse and addiction.
To further understand the effects of drug abuse, Sahai and other researchers in the Harel Weinstein Lab at Cornell are delving into drug interactions on a molecular level.
Using supercomputer resources, she is able to observe the binding of dopamine and various drugs to a 3D model of the dopamine transporter on a molecular level. According to Sahai, the work requires very long simulations in terms of microseconds and seconds to understand how drugs interact with the transporters.
Through the Extreme Science and Engineering Discovery Environment (XSEDE), a virtual cyberinfrastructure that provides researchers access to computing resources, Sahai performs these simulations on Stampede, the world’s 7th fastest supercomputer, at the Texas Advanced Computing Center (TACC).
"XSEDE-allocated resources are fundamental to helping us understand of how drugs work. There’s no way we could perform these simulations on the machines we have in house. Through TACC as an XSEDE service provider, we can also expect an exponential increase in computational results, and good customer service and feedback."
Ultimately, Sahai’s research will contribute to an existing body of work that is attempting to develop a cocaine binding inhibitor without suppressing the dopamine transporter.
"If we can understand how drugs bind to the dopamine transporter, then we can better understand drug abuse and add information on what’s really important in designing therapeutic strategies to combat addiction," Sahai said.
A Common Link in the Research
While Sahai is still working to understand drug abuse, her simulations of the dopamine transporter have contributed to published research on Parkinson’s disease and other neurological disorders.
In a collaborative study with the University of Copenhagen, Copenhagen University Hospital, and other research groups in the U.S. and Europe, researchers revealed the first known link between de novo mutations in the dopamine transporter and Parkinsonism in adults.
The study found that mutations can produce typical effects including debilitating tremors, major loss of motor control, and depression. The study also provides additional support for the idea that dopamine transporter mutations are a risk factor for attention deficit hyperactivity disorder (ADHD).
After identifying the dopamine transporter as the mutated gene linked to Parkinson’s, researchers once again turned to the Harel Weinstein Lab due to its long-standing interest and investment in studying the human dopamine transporter.
Sahai’s simulations using XSEDE and TACC’s Stampede supercomputer supported clinical trials by offering greater insight into how the dopamine transporter is involved in neurological disorders.
"This research is very important to me," Sahai said. "I was able to look at the structure of the dopamine transporter on behalf of experimentalists and understand how irregularities in this protein are harming an actual person, instead of just looking at something isolated on a computer screen."
While there is currently no cure for Parkinson’s disease, a deeper understanding of the specific mechanisms behind it will help the seven to ten million people afflicted with the disease.
"Like my work on drug abuse, the end goal is thinking about how we can help people. And it all comes back to drug design," Sahai said.
high resolution →

neurosciencestuff:

The Dopamine Transporter

Recent published research in the Journal of Clinical Investigation demonstrates how changes in dopamine signaling and dopamine transporter function are linked to neurological and psychiatric diseases, including early-onset Parkinsonism and attention deficit hyperactivity disorder (ADHD).

"The present findings should provide a critical basis for further exploration of how dopamine dysfunction and altered dopamine transporter function contribute to brain disorders" said Michelle Sahai, a postdoctoral associate at the Weill Cornell Medical College of Cornell University, adding "it also contributes to research efforts developing new ways to help the millions of people suffering."

Sahai is also studying the effects of cocaine, a widely abused substance with psychostimulant effects that targets the dopamine transporter. She and her colleagues expect to release these specific findings within the next year.

Losing Control

Dopamine is a neurotransmitter that plays an important role in our cognitive, emotional, and behavioral functioning. When activated from outside stimuli, nerve cells in the brain release dopamine, causing a chain reaction that releases even more of this chemical messenger.

To ensure that this doesn’t result in an infinite loop of dopamine production, a protein called the dopamine transporter reabsorbs the dopamine back into the cell to terminate the process. As dopamine binds to its transporter, it is returned to the nerve cells for future use.

However, cocaine and other drugs like amphetamine, completely hijack this well-balanced system.

"When cocaine enters the bloodstream, it does not allow dopamine to bind to its transporter, which results in a rapid increase in dopamine levels," Sahai explained.

The competitive binding and subsequent excess dopamine is what causes euphoria, increased energy, and alertness. It also contributes to drug abuse and addiction.

To further understand the effects of drug abuse, Sahai and other researchers in the Harel Weinstein Lab at Cornell are delving into drug interactions on a molecular level.

Using supercomputer resources, she is able to observe the binding of dopamine and various drugs to a 3D model of the dopamine transporter on a molecular level. According to Sahai, the work requires very long simulations in terms of microseconds and seconds to understand how drugs interact with the transporters.

Through the Extreme Science and Engineering Discovery Environment (XSEDE), a virtual cyberinfrastructure that provides researchers access to computing resources, Sahai performs these simulations on Stampede, the world’s 7th fastest supercomputer, at the Texas Advanced Computing Center (TACC).

"XSEDE-allocated resources are fundamental to helping us understand of how drugs work. There’s no way we could perform these simulations on the machines we have in house. Through TACC as an XSEDE service provider, we can also expect an exponential increase in computational results, and good customer service and feedback."

Ultimately, Sahai’s research will contribute to an existing body of work that is attempting to develop a cocaine binding inhibitor without suppressing the dopamine transporter.

"If we can understand how drugs bind to the dopamine transporter, then we can better understand drug abuse and add information on what’s really important in designing therapeutic strategies to combat addiction," Sahai said.

A Common Link in the Research

While Sahai is still working to understand drug abuse, her simulations of the dopamine transporter have contributed to published research on Parkinson’s disease and other neurological disorders.

In a collaborative study with the University of Copenhagen, Copenhagen University Hospital, and other research groups in the U.S. and Europe, researchers revealed the first known link between de novo mutations in the dopamine transporter and Parkinsonism in adults.

The study found that mutations can produce typical effects including debilitating tremors, major loss of motor control, and depression. The study also provides additional support for the idea that dopamine transporter mutations are a risk factor for attention deficit hyperactivity disorder (ADHD).

After identifying the dopamine transporter as the mutated gene linked to Parkinson’s, researchers once again turned to the Harel Weinstein Lab due to its long-standing interest and investment in studying the human dopamine transporter.

Sahai’s simulations using XSEDE and TACC’s Stampede supercomputer supported clinical trials by offering greater insight into how the dopamine transporter is involved in neurological disorders.

"This research is very important to me," Sahai said. "I was able to look at the structure of the dopamine transporter on behalf of experimentalists and understand how irregularities in this protein are harming an actual person, instead of just looking at something isolated on a computer screen."

While there is currently no cure for Parkinson’s disease, a deeper understanding of the specific mechanisms behind it will help the seven to ten million people afflicted with the disease.

"Like my work on drug abuse, the end goal is thinking about how we can help people. And it all comes back to drug design," Sahai said.

Solar Dynamics Observatory Captures Images of Lunar Transit
On July 26, 2014, from 10:57 a.m. to 11:42 a.m. EDT, the moon crossed between NASA’s Solar Dynamics Observatory (SDO) and the sun, a phenomenon called a lunar transit. A lunar transit happens approximately twice a year, causing a partial solar eclipse that can only be seen from SDO’s point of view. Images of the eclipse show a crisp lunar horizon, because the moon has no atmosphere that would distort light. This image shows the blended result of two SDO wavelengths - one in 304 wavelength and another in 171 wavelength.
Image Credit: NASA/SDO
high resolution →

Solar Dynamics Observatory Captures Images of Lunar Transit

On July 26, 2014, from 10:57 a.m. to 11:42 a.m. EDT, the moon crossed between NASA’s Solar Dynamics Observatory (SDO) and the sun, a phenomenon called a lunar transit. A lunar transit happens approximately twice a year, causing a partial solar eclipse that can only be seen from SDO’s point of view. Images of the eclipse show a crisp lunar horizon, because the moon has no atmosphere that would distort light. This image shows the blended result of two SDO wavelengths - one in 304 wavelength and another in 171 wavelength.

Image Credit: NASA/SDO

(Source: nasa.gov)

Every cigarette smoked shortens your life expectancy by 14.4 to 14.8 minutes.

Linus Pauling, chemist, physiologist, 2-time Nobel Prize winner. (via cranquis) —

probablyasocialecologist:

How Japan Plans to Build an Orbital Solar Farm
Here Comes the Sun: Mirrors in orbit would reflect sunlight onto huge solar panels, and the resulting power would be beamed down to Earth. Image: John MacNeill

Imagine looking out over Tokyo Bay from high above and seeing a man-made island in the harbor, 3 kilometers long. A massive net is stretched over the island and studded with 5 billion tiny rectifying antennas, which convert microwave energy into DC electricity. Also on the island is a substation that sends that electricity coursing through a submarine cable to Tokyo, to help keep the factories of the Keihin industrial zone humming and the neon lights of Shibuya shining bright.
But you can’t even see the most interesting part. Several giant solar collectors in geosynchronous orbit are beaming microwaves down to the island from 36 000 km above Earth.
It’s been the subject of many previous studies and the stuff of sci-fi for decades, but space-based solar power could at last become a reality—and within 25 years, according to a proposal from researchers at the Japan Aerospace Exploration Agency (JAXA). The agency, which leads the world in research on space-based solar power systems, now has a technology road map that suggests a series of ground and orbital demonstrations leading to the development in the 2030s of a 1-gigawatt commercial system—about the same output as a typical nuclear power plant.

Continue reading 
Further reading:
The US Navy’s Plan to Beam Down Energy From Orbiting Solar Panels
Space-based solar power
Space-based solar power (wikipedia)
Solar Power via the Moon (pdf)
Solar Power Satellite Design Considerations
URSI White Paper on Solar Power Satellite (SPS) Systems (pdf)
Orbiting Solar Panels Beam Energy From Space
high resolution →

probablyasocialecologist:

How Japan Plans to Build an Orbital Solar Farm

Here Comes the Sun: Mirrors in orbit would reflect sunlight onto huge solar panels, and the resulting power would be beamed down to Earth. Image: John MacNeill

Imagine looking out over Tokyo Bay from high above and seeing a man-made island in the harbor, 3 kilometers long. A massive net is stretched over the island and studded with 5 billion tiny rectifying antennas, which convert microwave energy into DC electricity. Also on the island is a substation that sends that electricity coursing through a submarine cable to Tokyo, to help keep the factories of the Keihin industrial zone humming and the neon lights of Shibuya shining bright.

But you can’t even see the most interesting part. Several giant solar collectors in geosynchronous orbit are beaming microwaves down to the island from 36 000 km above Earth.

It’s been the subject of many previous studies and the stuff of sci-fi for decades, but space-based solar power could at last become a reality—and within 25 years, according to a proposal from researchers at the Japan Aerospace Exploration Agency (JAXA). The agency, which leads the world in research on space-based solar power systems, now has a technology road map that suggests a series of ground and orbital demonstrations leading to the development in the 2030s of a 1-gigawatt commercial system—about the same output as a typical nuclear power plant.

Continue reading 

Further reading:

Weird Orbits of Alien Planets May Be Due to Twin Stars
Some of the oddly skewed orbits of many alien worlds may be due to the twin stars they are often found circling, a new study suggests.
In our solar system, the orbits of most planets are nearly circular, orbiting the sun’s equator. However, many of the exoplanets astronomers have discovered in the past two decades or so have mysteriously skewed orbits. They may be eccentric — that is, oval-shaped. They could also be inclined — tilted at an angle from the equators of their stars.
Continue Reading
high resolution →

Weird Orbits of Alien Planets May Be Due to Twin Stars

Some of the oddly skewed orbits of many alien worlds may be due to the twin stars they are often found circling, a new study suggests.

In our solar system, the orbits of most planets are nearly circular, orbiting the sun’s equator. However, many of the exoplanets astronomers have discovered in the past two decades or so have mysteriously skewed orbits. They may be eccentric — that is, oval-shaped. They could also be inclined — tilted at an angle from the equators of their stars.

Continue Reading

spaceexp:

Canon 60Da Wide Field Astrophotography - Milky Way
Source: astroval1
high resolution →

spaceexp:

Canon 60Da Wide Field Astrophotography - Milky Way

Source: astroval1

spaceplasma:

Jupiter’s Irregular Satellites

The planet Jupiter has 67 confirmed moons. This gives it the largest retinue of moons with “reasonably secure” orbits of any planet in the Solar System. In fact, Jupiter and its moons are like a miniature solar system with the inner moons orbiting faster than the others. Eight of Jupiter’s moons are regular satellites, with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter’s equatorial plane. The remainder of Jupiter’s moons are irregular satellites, whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. There are 17 recently discovered irregular satellites that have not yet been named.

Image Credit: NASA/ESA/Lowell Observatory/J. Spencer/JHU-APL

spaceplasma:

Jupiter’s Irregular Satellites

The planet Jupiter has 67 confirmed moons. This gives it the largest retinue of moons with “reasonably secure” orbits of any planet in the Solar System. In fact, Jupiter and its moons are like a miniature solar system with the inner moons orbiting faster than the others. Eight of Jupiter’s moons are regular satellites, with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter’s equatorial plane. The remainder of Jupiter’s moons are irregular satellites, whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. There are 17 recently discovered irregular satellites that have not yet been named.

Image Credit: NASA/ESA/Lowell Observatory/J. Spencer/JHU-APL

'Quantum Cheshire Cat' becomes reality
Scientists have for the first time separated a particle from one of its physical properties - creating a “quantum Cheshire Cat”.
The phenomenon is named after the curious feline in Alice in Wonderland, who vanishes leaving only its grin.
Researchers took a beam of neutrons and separated them from their magnetic moment, like passengers and their baggage at airport security.
They describe their feat in Nature Communications.
Continue Reading
high resolution →

'Quantum Cheshire Cat' becomes reality

Scientists have for the first time separated a particle from one of its physical properties - creating a “quantum Cheshire Cat”.

The phenomenon is named after the curious feline in Alice in Wonderland, who vanishes leaving only its grin.

Researchers took a beam of neutrons and separated them from their magnetic moment, like passengers and their baggage at airport security.

They describe their feat in Nature Communications.

Continue Reading

Quantum Sleeping Beauty and the Multiverse
Hidden in my papers with Chip Sebens on Everettian quantum mechanics is a simple solution to a fun philosophical problem with potential implications for cosmology: thequantum version of the Sleeping Beauty Problem. It’s a classic example of self-locating uncertainty: knowing everything there is to know about the universe except where you are in it. (Skeptic’s Play beat me to the punch here, but here’s my own take.)
The setup for the traditional (non-quantum) problem is the following. Some experimental philosophers enlist the help of a subject, Sleeping Beauty. She will be put to sleep, and a coin is flipped. If it comes up heads, Beauty will be awoken on Monday and interviewed; then she will (voluntarily) have all her memories of being awakened wiped out, and be put to sleep again. Then she will be awakened again on Tuesday, and interviewed once again. If the coin came up tails, on the other hand, Beauty will only be awakened on Monday. Beauty herself is fully aware ahead of time of what the experimental protocol will be.
Continue Reading
high resolution →

Quantum Sleeping Beauty and the Multiverse

Hidden in my papers with Chip Sebens on Everettian quantum mechanics is a simple solution to a fun philosophical problem with potential implications for cosmology: thequantum version of the Sleeping Beauty Problem. It’s a classic example of self-locating uncertainty: knowing everything there is to know about the universe except where you are in it. (Skeptic’s Play beat me to the punch here, but here’s my own take.)

The setup for the traditional (non-quantum) problem is the following. Some experimental philosophers enlist the help of a subject, Sleeping Beauty. She will be put to sleep, and a coin is flipped. If it comes up heads, Beauty will be awoken on Monday and interviewed; then she will (voluntarily) have all her memories of being awakened wiped out, and be put to sleep again. Then she will be awakened again on Tuesday, and interviewed once again. If the coin came up tails, on the other hand, Beauty will only be awakened on Monday. Beauty herself is fully aware ahead of time of what the experimental protocol will be.

Continue Reading

Boosting the force of empty space
Vacuum fluctuations may be among the most counter-intuitive phenomena of quantum physics. Theorists from the Weizmann Institute (Rehovot, Israel) and the Vienna University of Technology propose a way to amplify their force.
Vacuum is not as empty as one might think. In fact, empty space is a bubbling soup of various virtual particles popping in and out of existence – a phenomenon called “vacuum fluctuations”. Usually, such extremely short-lived particles remain completely unnoticed, but in certain cases vacuum forces can have a measurable effect. A team of researchers from the Weizmann Institute of Science (Rehovot, Israel) and the Vienna University of Technology has now proposed a method of amplifying these forces by several orders of magnitude using a transmission line, channelling virtual photons.
Continue Reading

Boosting the force of empty space

Vacuum fluctuations may be among the most counter-intuitive phenomena of quantum physics. Theorists from the Weizmann Institute (Rehovot, Israel) and the Vienna University of Technology propose a way to amplify their force.

Vacuum is not as empty as one might think. In fact, empty space is a bubbling soup of various virtual particles popping in and out of existence – a phenomenon called “vacuum fluctuations”. Usually, such extremely short-lived particles remain completely unnoticed, but in certain cases vacuum forces can have a measurable effect. A team of researchers from the Weizmann Institute of Science (Rehovot, Israel) and the Vienna University of Technology has now proposed a method of amplifying these forces by several orders of magnitude using a transmission line, channelling virtual photons.

Continue Reading

Brain’s Dynamic Duel Underlies Win-Win Choices
People choosing between two or more equally positive outcomes experience paradoxical feelings of pleasure and anxiety, feelings associated with activity in different regions of the brain, according to research led by Amitai Shenhav, an associate research scholar at the Princeton Neuroscience Institute at Princeton University.
In one experiment, 42 people rated the desirability of more than 300 products using an auction-like procedure. Then they looked at images of paired products with different or similar values and were asked to choose between them. Their brain activity was scanned using functional magnetic resonance imaging (fMRI). After the scan, participants reported their feelings before and during each choice. They received one of their choices at the end of the study.
Continue Reading
high resolution →

Brain’s Dynamic Duel Underlies Win-Win Choices

People choosing between two or more equally positive outcomes experience paradoxical feelings of pleasure and anxiety, feelings associated with activity in different regions of the brain, according to research led by Amitai Shenhav, an associate research scholar at the Princeton Neuroscience Institute at Princeton University.

In one experiment, 42 people rated the desirability of more than 300 products using an auction-like procedure. Then they looked at images of paired products with different or similar values and were asked to choose between them. Their brain activity was scanned using functional magnetic resonance imaging (fMRI). After the scan, participants reported their feelings before and during each choice. They received one of their choices at the end of the study.

Continue Reading

spaceexp:

Milky Way over Mt. Hood, Oregon
high resolution →

spaceexp:

Milky Way over Mt. Hood, Oregon

Tethys in Sunlight
Tethys, like many moons in the solar system, keeps one face pointed towards the planet around which it orbits. Tethys’ anti-Saturn face is seen here, fully illuminated, basking in sunlight. On the right side of the moon in this image is the huge crater Odysseus.
The Odysseus crater is 280 miles (450 kilometers) across while Tethys is 660 miles (1,062 kilometers) across. See PIA07693 for a closer view and more information on the Odysseus crater.
This view looks toward the anti-Saturn side of Tethys. North on Tethys is up and rotated 33 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on June 15, 2013.
The view was acquired at a distance of approximately 503,000 miles (809,000 kilometers) from Tethys. Image scale is 3 miles (5 kilometers) per pixel.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .
Image Credit: NASA/JPL-Caltech/Space Science Institute

Tethys in Sunlight

Tethys, like many moons in the solar system, keeps one face pointed towards the planet around which it orbits. Tethys’ anti-Saturn face is seen here, fully illuminated, basking in sunlight. On the right side of the moon in this image is the huge crater Odysseus.

The Odysseus crater is 280 miles (450 kilometers) across while Tethys is 660 miles (1,062 kilometers) across. See PIA07693 for a closer view and more information on the Odysseus crater.

This view looks toward the anti-Saturn side of Tethys. North on Tethys is up and rotated 33 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on June 15, 2013.

The view was acquired at a distance of approximately 503,000 miles (809,000 kilometers) from Tethys. Image scale is 3 miles (5 kilometers) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Image Credit: NASA/JPL-Caltech/Space Science Institute

(Source: astrobio.net)

The interplay between these new theoretical ideas and new high‐quality observational data has catapulted cosmology from the purely theoretical domain and into the field of rigorous experimental science. This process began at the beginning of the twentieth century, with the work of Albert Einstein.

Free chapter from Cosmology: A Very Short Introduction on the history of cosmology and how it extends from myth to science. This chapter is free until 25 September on Very Short Introductions Online. (via oupacademic) —