Why Physicists Are Saying Consciousness Is A State Of Matter, Like a Solid, A Liquid Or A Gas
A new way of thinking about consciousness is sweeping through science like wildfire. Now physicists are using it to formulate the problem of consciousness in concrete mathematical terms for the first time
There’s a quiet revolution underway in theoretical physics. For as long as the discipline has existed, physicists have been reluctant to discuss consciousness, considering it a topic for quacks and charlatans. Indeed, the mere mention of the ‘c’ word could ruin careers.
That’s finally beginning to change thanks to a fundamentally new way of thinking about consciousness that is spreading like wildfire through the theoretical physics community. And while the problem of consciousness is far from being solved, it is finally being formulated mathematically as a set of problems that researchers can understand, explore and discuss.
Continue Reading
high resolution →

Why Physicists Are Saying Consciousness Is A State Of Matter, Like a Solid, A Liquid Or A Gas

A new way of thinking about consciousness is sweeping through science like wildfire. Now physicists are using it to formulate the problem of consciousness in concrete mathematical terms for the first time

There’s a quiet revolution underway in theoretical physics. For as long as the discipline has existed, physicists have been reluctant to discuss consciousness, considering it a topic for quacks and charlatans. Indeed, the mere mention of the ‘c’ word could ruin careers.

That’s finally beginning to change thanks to a fundamentally new way of thinking about consciousness that is spreading like wildfire through the theoretical physics community. And while the problem of consciousness is far from being solved, it is finally being formulated mathematically as a set of problems that researchers can understand, explore and discuss.

Continue Reading

Brain Control in a Flash of Light
Dr. Karl Deisseroth is having a very early breakfast before the day gets going at the annual meeting of theSociety for Neuroscience. Thirty thousand people who study the brain are here at the Convention Center, a small city’s worth of badge-wearing, networking, lecture-attending scientists.
For Dr. Deisseroth, though, this crowd is a bit like the gang at Cheers — everybody knows his name. He is a Stanford psychiatrist and a neuroscientist, and one of the people most responsible for the development of optogenetics, a technique that allows researchers to turn brain cells on and off with a combination of genetic manipulation and pulses of light.
Continue Reading
high resolution →

Brain Control in a Flash of Light

Dr. Karl Deisseroth is having a very early breakfast before the day gets going at the annual meeting of theSociety for Neuroscience. Thirty thousand people who study the brain are here at the Convention Center, a small city’s worth of badge-wearing, networking, lecture-attending scientists.

For Dr. Deisseroth, though, this crowd is a bit like the gang at Cheers — everybody knows his name. He is a Stanford psychiatrist and a neuroscientist, and one of the people most responsible for the development of optogenetics, a technique that allows researchers to turn brain cells on and off with a combination of genetic manipulation and pulses of light.

Continue Reading

Scientists Identify Critical New Protein Complex Involved in Learning and Memory
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a protein complex that plays a critical but previously unknown role in learning and memory formation.
The study, which showed a novel role for a protein known as RGS7, was published April 22, 2014 in the journaleLife, a publisher supported by the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust.
Continue Reading
high resolution →

Scientists Identify Critical New Protein Complex Involved in Learning and Memory

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a protein complex that plays a critical but previously unknown role in learning and memory formation.

The study, which showed a novel role for a protein known as RGS7, was published April 22, 2014 in the journaleLife, a publisher supported by the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust.

Continue Reading

Young writers should read books past bedtime and write things down in notebooks when they are supposed to be doing something else.

Lemony Snicket

(via educationalliberty)

(Source: lemonysnicketblog)

Supergiant Star Near Giraffe’s Hind Foot
NASA’s Wide-field Infrared Survey Explorer, or WISE, captured this colorful image of the nebula BFS 29 surrounding the star CE-Camelopardalis, found hovering in the band of the night sky comprising the Milky Way. Most of the gas and dust in this image cannot be seen directly in visible light, but WISE’s detectors revealed exquisite new details, and even some hidden stars.
The nebulous interstellar gas and dust in this image is known as BFS 29. “BFS” stands for Blitz, Fich, and Stark — the three astronomers who identified and catalogued 65 new star-forming regions in 1982 (the “29” simply means that it’s the 29th object in their catalog). In visible light, BFS 29 can be seen, but only very slightly. This is because the dust scatters and reflects some of the light from nearby stars, hence its classification as a reflection nebula. The gas in BFS 29 also contains large amounts of ionized hydrogen — referred to by astronomers as “H II.” Hence, the nebula is also classified as an HII region. Reflection nebulae and HII regions are often associated with star formation.
Most of the illumination and energy in BFS 29 is likely provided by the star CE-Camelopardalis. The “CE” in its name comes from a complex naming system for variable stars. Camelopardalis is the name of the constellation in which it is found, and means giraffe in Latin (from a camel wearing a leopard’s coat). Of the three brightest stars in this image, it is the bright pink-colored star nearest to the center of the image. The other two bright stars cannot be seen in visible light; they are hidden behind the clouds of gas and dust. In infrared light, however, they shine through brilliantly. CE-Camelopardalis is a variable supergiant star, which means it will eventually end its life in a supernova, likely leaving behind a black hole. It is near the giraffe’s hind foot, making a sort of ankle bracelet, as compared to the emerald necklace featured in the Nov. 9, 2010 image.
All four of WISE’s infrared detectors were used to make this image. The colors used represent specific wavelengths of infrared radiation. Blue and blue-green (cyan) represent 3.4- and 4.6-micron light, respectively. These wavelengths are mainly emitted by stars within the Milky Way. Green represents 12-micron light, which is emitted by the warm gas of the nebulae. Red represents the longest wavelength, 22-micron light emitted by cooler dust within the nebulae.
JPL manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.
More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu.
Image Credit: NASA/JPL-Caltech/UCLA
high resolution →

Supergiant Star Near Giraffe’s Hind Foot

NASA’s Wide-field Infrared Survey Explorer, or WISE, captured this colorful image of the nebula BFS 29 surrounding the star CE-Camelopardalis, found hovering in the band of the night sky comprising the Milky Way. Most of the gas and dust in this image cannot be seen directly in visible light, but WISE’s detectors revealed exquisite new details, and even some hidden stars.

The nebulous interstellar gas and dust in this image is known as BFS 29. “BFS” stands for Blitz, Fich, and Stark — the three astronomers who identified and catalogued 65 new star-forming regions in 1982 (the “29” simply means that it’s the 29th object in their catalog). In visible light, BFS 29 can be seen, but only very slightly. This is because the dust scatters and reflects some of the light from nearby stars, hence its classification as a reflection nebula. The gas in BFS 29 also contains large amounts of ionized hydrogen — referred to by astronomers as “H II.” Hence, the nebula is also classified as an HII region. Reflection nebulae and HII regions are often associated with star formation.

Most of the illumination and energy in BFS 29 is likely provided by the star CE-Camelopardalis. The “CE” in its name comes from a complex naming system for variable stars. Camelopardalis is the name of the constellation in which it is found, and means giraffe in Latin (from a camel wearing a leopard’s coat). Of the three brightest stars in this image, it is the bright pink-colored star nearest to the center of the image. The other two bright stars cannot be seen in visible light; they are hidden behind the clouds of gas and dust. In infrared light, however, they shine through brilliantly. CE-Camelopardalis is a variable supergiant star, which means it will eventually end its life in a supernova, likely leaving behind a black hole. It is near the giraffe’s hind foot, making a sort of ankle bracelet, as compared to the emerald necklace featured in the Nov. 9, 2010 image.

All four of WISE’s infrared detectors were used to make this image. The colors used represent specific wavelengths of infrared radiation. Blue and blue-green (cyan) represent 3.4- and 4.6-micron light, respectively. These wavelengths are mainly emitted by stars within the Milky Way. Green represents 12-micron light, which is emitted by the warm gas of the nebulae. Red represents the longest wavelength, 22-micron light emitted by cooler dust within the nebulae.

JPL manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu.

Image Credit: NASA/JPL-Caltech/UCLA

(Source: jpl.nasa.gov)

The attention given to the side of the head which has received the injury, in connection with a specific reference to the side of the body nervously affected, is in itself evidence that in this case the ancient surgeon was already beginning observations on the localization of functions in the brain.

 James Henry Breasted

(via neuromorphogenesis)

neuromorphogenesis:

To quash depression, some brain cells must push through the stress
The nature of psychological resilience has, in recent years, been a subject of enormous interest to researchers, who have wondered how some people endure and even thrive under a certain amount of stress, and others crumble and fall prey to depression. The resulting research has underscored the importance of feeling socially connected and the value of psychotherapy to identify and exercise patterns of thought that protect against hopelessness and defeat.
But what does psychological resilience look like inside our brains, at the cellular level? Such knowledge might help bolster peoples’ immunity to depression and even treat people under chronic stress. And a new study published Thursday in Science magazine has made some progress in the effort to see the brain struggling with — and ultimately triumphing over — stress.
A group of neuroscientists at Mount Sinai’s Icahn School of Medicine in New York focused on the dopaminergic cells in the brain’s ventral tegmentum, a key node in the brain’s reward circuitry and therefore an important place to look at how social triumph and defeat play out in the brain. In mice under stress because they were either chronically isolated or rebuffed or attacked by fellow littermates, the group had observed that this group of neurons become overactive.
It would logically follow, then, that if you don’t want stressed mice (or people) to become depressed, you would want to avoid hyperactivity in that key group of neurons, right?
Actually, wrong, the researchers found. In a series of experiments, they saw that the mice who were least prone to behave in socially defeated ways when under stress were actually the ones whose dopaminergic cells in the ventral tegmental area displayed the greatest levels of hyperactivity in response to stress. And that hyperactivity was most pronounced in the neurons that extended from the tegmentum into the nearby nucleus accumbens, also a key node in the brain’s reward system.
The researchers wondered whether inducing similar hyperactivity in mice prone to depression — effectively pushing these cells to signal even faster and harder — might help bolster them against succumbing to passivity and defeat when under stress? Using antidepressant medication, viruses and lights that turn circuits on and off, they found that it could. By activating the chemical processes that induced the same level of hyperactivity seen in the ventral tegmenta of resilient mice, they made depression-prone mice more hardy and happy in the face of stress.
The results suggest something profound about the brain and depression: that in the healthy and psychologically resilient, stress induces its own chemical countermeasures, fostering a sort of psychological equilibrium. Someday medications might employ strategies that help promote such equilibrium to head off depression before it starts, as well as to treat it once it has set in.
high resolution →

neuromorphogenesis:

To quash depression, some brain cells must push through the stress

The nature of psychological resilience has, in recent years, been a subject of enormous interest to researchers, who have wondered how some people endure and even thrive under a certain amount of stress, and others crumble and fall prey to depression. The resulting research has underscored the importance of feeling socially connected and the value of psychotherapy to identify and exercise patterns of thought that protect against hopelessness and defeat.

But what does psychological resilience look like inside our brains, at the cellular level? Such knowledge might help bolster peoples’ immunity to depression and even treat people under chronic stress. And a new study published Thursday in Science magazine has made some progress in the effort to see the brain struggling with — and ultimately triumphing over — stress.

A group of neuroscientists at Mount Sinai’s Icahn School of Medicine in New York focused on the dopaminergic cells in the brain’s ventral tegmentum, a key node in the brain’s reward circuitry and therefore an important place to look at how social triumph and defeat play out in the brain. In mice under stress because they were either chronically isolated or rebuffed or attacked by fellow littermates, the group had observed that this group of neurons become overactive.

It would logically follow, then, that if you don’t want stressed mice (or people) to become depressed, you would want to avoid hyperactivity in that key group of neurons, right?

Actually, wrong, the researchers found. In a series of experiments, they saw that the mice who were least prone to behave in socially defeated ways when under stress were actually the ones whose dopaminergic cells in the ventral tegmental area displayed the greatest levels of hyperactivity in response to stress. And that hyperactivity was most pronounced in the neurons that extended from the tegmentum into the nearby nucleus accumbens, also a key node in the brain’s reward system.

The researchers wondered whether inducing similar hyperactivity in mice prone to depression — effectively pushing these cells to signal even faster and harder — might help bolster them against succumbing to passivity and defeat when under stress? Using antidepressant medication, viruses and lights that turn circuits on and off, they found that it could. By activating the chemical processes that induced the same level of hyperactivity seen in the ventral tegmenta of resilient mice, they made depression-prone mice more hardy and happy in the face of stress.

The results suggest something profound about the brain and depression: that in the healthy and psychologically resilient, stress induces its own chemical countermeasures, fostering a sort of psychological equilibrium. Someday medications might employ strategies that help promote such equilibrium to head off depression before it starts, as well as to treat it once it has set in.

Massive Nearby Spiral Galaxy NGC 2841
Image Credit: Hubble, Subaru; Composition & Copyright: Robert Gendler
Explanation: It is one of the more massive galaxies known. A mere 46 million light-years distant, spiral galaxy NGC 2841 can be found in the northern constellation ofUrsa Major. This sharp view of the gorgeous island universe shows off a striking yellow nucleus and galactic disk. Dust lanes, small, pink star-forming regions, and young blue star clusters are embedded in the patchy, tightly wound spiral arms. In contrast, many other spirals exhibit grand, sweeping arms with large star-forming regions. NGC 2841 has a diameter of over 150,000 light-years, even larger than our own Milky Way and captured by this composite image merging exposures from the orbiting 2.4-meterHubble Space Telescope and the ground-based 8.2-meter Subaru Telescope. X-ray images suggest that resulting winds and stellar explosions create plumes of hot gas extending into a halo around NGC 2841.
high resolution →

Massive Nearby Spiral Galaxy NGC 2841

Image Credit: HubbleSubaruComposition & Copyright: Robert Gendler

Explanation: It is one of the more massive galaxies known. A mere 46 million light-years distant, spiral galaxy NGC 2841 can be found in the northern constellation ofUrsa Major. This sharp view of the gorgeous island universe shows off a striking yellow nucleus and galactic disk. Dust lanes, small, pink star-forming regions, and young blue star clusters are embedded in the patchy, tightly wound spiral arms. In contrast, many other spirals exhibit grand, sweeping arms with large star-forming regions. NGC 2841 has a diameter of over 150,000 light-years, even larger than our own Milky Way and captured by this composite image merging exposures from the orbiting 2.4-meterHubble Space Telescope and the ground-based 8.2-meter Subaru TelescopeX-ray images suggest that resulting winds and stellar explosions create plumes of hot gas extending into a halo around NGC 2841.

astronomy-to-zoology:

Pygmy Falcon (Polihierax semitorquatus)

Also known as the African Pygmy Falcon, P. semitorquatus is a small species of falcon, that occurs in eastern and southern Africa. The population in eastern Africa (P. s. castanotus) occurs from Sudan to Somalia south to Uganda and Tanzania. The population in southern Africa (P. s. semitorquatus) occurs from Angola to South Africa.

True to its common name P. semitorquatus is very small at only 19-20 cm long, making it the smallest raptor in Africa. Pygmy falcons typically inhabit dry bush habitats and will feed on insects, small mammals, birds, and reptiles. Pygmy falcons will usually in the nests of weavers, and even though they feed on bird will rarely go after their weaver neighbors.

Classification

Animalia-Chordata-Aves-Falconiformes-Falconidae-Polihierax-P. semitorquatus

Images: Steve Garvie and Bob

ohstarstuff:

Jupiter’s Great Red Spot 
Jupiter’s Great Red Spot (GRS) is an atmospheric storm that has been raging in Jupiter’s southern Hemisphere for at least 400 years.
About 100 years ago, the storm covered over 40,000 km of the surface. It is currently about one half of that size and seems to be shrinking. 
At the present rate that it is shrinking it could become circular by 2040. The GRS rotates counter-clockwise(anti-cyclonic) and makes a full rotation every six Earth days. 
It is not known exactly what causes the Great Red Spot’s reddish color. The most popular theory, which is supported by laboratory experiments, holds that the color may be caused by complex organic molecules, red phosphorus, or other sulfur compounds. 
The GRS is about two to three times larger than Earth. Winds at its oval edges can reach up to 425 mph (680 km/h) 
Infrared data has indicated that the Great Red Spot is colder (and thus, higher in altitude) than most of the other clouds on the planet
Sources: http://www.universetoday.com/15163/jupiters-great-red-spot/ http://www.space.com/23708-jupiter-great-red-spot-longevity.html

ohstarstuff:

Jupiter’s Great Red Spot

  • Jupiter’s Great Red Spot (GRS) is an atmospheric storm that has been raging in Jupiter’s southern Hemisphere for at least 400 years.
  • About 100 years ago, the storm covered over 40,000 km of the surface. It is currently about one half of that size and seems to be shrinking. 
  • At the present rate that it is shrinking it could become circular by 2040. The GRS rotates counter-clockwise(anti-cyclonic) and makes a full rotation every six Earth days. 
  • It is not known exactly what causes the Great Red Spot’s reddish color. The most popular theory, which is supported by laboratory experiments, holds that the color may be caused by complex organic molecules, red phosphorus, or other sulfur compounds. 
  • The GRS is about two to three times larger than Earth. Winds at its oval edges can reach up to 425 mph (680 km/h) 
  • Infrared data has indicated that the Great Red Spot is colder (and thus, higher in altitude) than most of the other clouds on the planet

Sources:
http://www.universetoday.com/15163/jupiters-great-red-spot/ http://www.space.com/23708-jupiter-great-red-spot-longevity.html

Milky Way’s Structure Mapped in Unprecedented Detail
Astronomers are one step closer to solving a longstanding mystery — just what our Milky Way galaxy looks like.
It may seem odd that a comprehensive understanding of the Milky Way’s structure has so far eluded researchers. But it’s tough to get a broad view of the galaxy from within.
"We are fairly confident that the Milky Way is a spiral galaxy, but we don’t know much in detail. At the most basic level, we’d like to be able to make a map that would show in detail what it looks like," said Mark Reid of the Harvard-Smithsonian Center for Astrophysics, who led the new study. 
Continue Reading
high resolution →

Milky Way’s Structure Mapped in Unprecedented Detail

Astronomers are one step closer to solving a longstanding mystery — just what our Milky Way galaxy looks like.

It may seem odd that a comprehensive understanding of the Milky Way’s structure has so far eluded researchers. But it’s tough to get a broad view of the galaxy from within.

"We are fairly confident that the Milky Way is a spiral galaxy, but we don’t know much in detail. At the most basic level, we’d like to be able to make a map that would show in detail what it looks like," said Mark Reid of the Harvard-Smithsonian Center for Astrophysics, who led the new study. 

Continue Reading

fuckyeahfluiddynamics:

A water droplet can rebound completely without spreading from a superhydrophobic surface. The photo above is a long exposure image showing the trajectory of such a droplet as it bounces. In the initial bounces, the droplet leaves the surface fully, following a parabolic path with each rebound. The droplet’s kinetic energy is sapped with each rebound by surface deformation and vibration, making each bounce smaller than the last. Viscosity damps the drop’s vibrations, and the droplet eventually comes to rest after twenty or so rebounds. (Image credit: D. Richard and D. Quere)
high resolution →

fuckyeahfluiddynamics:

A water droplet can rebound completely without spreading from a superhydrophobic surface. The photo above is a long exposure image showing the trajectory of such a droplet as it bounces. In the initial bounces, the droplet leaves the surface fully, following a parabolic path with each rebound. The droplet’s kinetic energy is sapped with each rebound by surface deformation and vibration, making each bounce smaller than the last. Viscosity damps the drop’s vibrations, and the droplet eventually comes to rest after twenty or so rebounds. (Image credit: D. Richard and D. Quere)

skunkbear:

Close-ups of butterfly wing scales! You should definitely click on these images to get the full detail.

I’ve paired each amazing close-up (by macro photographer Linden Gledhill) with an image of the corresponding butterfly or moth.  The featured lepidoptera* are (in order of appearance):

*Lepidoptera (the scientific order that includes moths and butterflies) means “scaly wing.” The scales get their color not from pigment - but from microscopic structures that manipulate light.

The great science youtube channel “Smarter Every Day” has two videos on this very subject that I highly recommend:

A Star’s Early Chemistry Shapes Life-Friendly Atmospheres
Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless watch these planets as they form.
One major point of interest is the chemistry of the rubble that forms around a star before a planetary system is formed, known as the protoplanetary disc.
Continue Reading
high resolution →

A Star’s Early Chemistry Shapes Life-Friendly Atmospheres

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless watch these planets as they form.

One major point of interest is the chemistry of the rubble that forms around a star before a planetary system is formed, known as the protoplanetary disc.

Continue Reading

Fluke Forces
Dolphins prove that they rely on muscle power, rather than a trick of fluid dynamics, to race through water at high speeds.
Writing in the Journal of Experimental Biology in 1936, British zoologist James Gray made a simple calculation based on observations of a dolphin swimming alongside a ship in the Indian Ocean. The dolphin, he reported, had passed the vessel, from stern to bow, in 7 seconds. The ship was 41 meters long and it was moving at 8.5 knots. “This dolphin must therefore have been travelling at 20 knots [10.1 meters per second],” wrote Gray, who concluded, after an avalanche of more complex calculations, that dolphins couldn’t possibly have attained that speed using muscle power alone.
Continue Reading
high resolution →

Fluke Forces

Dolphins prove that they rely on muscle power, rather than a trick of fluid dynamics, to race through water at high speeds.

Writing in the Journal of Experimental Biology in 1936, British zoologist James Gray made a simple calculation based on observations of a dolphin swimming alongside a ship in the Indian Ocean. The dolphin, he reported, had passed the vessel, from stern to bow, in 7 seconds. The ship was 41 meters long and it was moving at 8.5 knots. “This dolphin must therefore have been travelling at 20 knots [10.1 meters per second],” wrote Gray, who concluded, after an avalanche of more complex calculations, that dolphins couldn’t possibly have attained that speed using muscle power alone.

Continue Reading