Study monitors DNA breaks and chromosome translocations in real time
Researchers in the U.S. have developed a new method to study damage to DNA and resultant translocations in living cells.
DNA damage occurs regularly in living cells as a result of normal cellular processes and because of environmental factors such as radiation. The damage is constantly repaired, but if the repairs fail a break may occur in the two DNA strands and the two sections of the double helix then drift apart. This is referred to as a double-strand break (DSB), and is dangerous to the host cell because when the broken strands attempt to pair off again they have no template to follow and can pair with different chromosomes, producing a chromosome translocation, which is an unexpected rearrangement of the genes. Chromosome translocations are a hallmark of cancer cells.
Continue Reading

Study monitors DNA breaks and chromosome translocations in real time

Researchers in the U.S. have developed a new method to study damage to DNA and resultant translocations in living cells.

DNA damage occurs regularly in living cells as a result of normal cellular processes and because of environmental factors such as radiation. The damage is constantly repaired, but if the repairs fail a break may occur in the two DNA strands and the two sections of the  then drift apart. This is referred to as a double-strand break (DSB), and is dangerous to the host cell because when the broken strands attempt to pair off again they have no template to follow and can pair with different chromosomes, producing a chromosome translocation, which is an unexpected rearrangement of the genes. Chromosome translocations are a hallmark of .

Continue Reading