Curved space-time on a chip
Photonic device simulates gravitational lensing predicted by Einstein’s general relativity.
It took two major expeditions charting the solar eclipse of 1919 to verify Albert Einstein’s weird prediction about gravity — that it distorts the path of light waves around stars and other astronomical bodies, distorting objects in the background. Now, researchers have created the first precise analogue of that effect on a microchip.
Any large mass distorts the geometry of space around it, for instance making parallel light rays diverge or converge. One consequence, described by Einstein’s general theory of relativity, is that objects behind a body such as the Sun may look magnified or distorted as the optical path of light goes through the region of warped space.
Continue Reading
high resolution →

Curved space-time on a chip

Photonic device simulates gravitational lensing predicted by Einstein’s general relativity.

It took two major expeditions charting the solar eclipse of 1919 to verify Albert Einstein’s weird prediction about gravity — that it distorts the path of light waves around stars and other astronomical bodies, distorting objects in the background. Now, researchers have created the first precise analogue of that effect on a microchip.

Any large mass distorts the geometry of space around it, for instance making parallel light rays diverge or converge. One consequence, described by Einstein’s general theory of relativity, is that objects behind a body such as the Sun may look magnified or distorted as the optical path of light goes through the region of warped space.

Continue Reading