Charged particles can be accelerated using light, leading the way for more compact particle accelerators
Modern particle accelerators measure up to several kilometres in size and cost billions of euros. But thanks to a new method they could shrink to less than 10 metres and cost 10 times less in future. To this end, physicists at the Max Planck Institute of Quantum Optics in Garching accelerated electrons directly using a light wave. In the conventional procedure by contrast, particles are accelerated with microwaves. In their demonstration experiment, John Breuer and Peter Hommelhoff obtained an accelerating force that was equally as strong as the force achieved in current conventional particle accelerators. The unique feature of the Garching-based procedure is that it is modular and can be expanded into a multi-level system capable of accelerating charged particles – which could be protons or ions, as well as electrons – around 100 times faster than current systems, and therefore could be built to a much smaller scale. Developmental work is still necessary for this expansion, however.
Continue Reading

Charged particles can be accelerated using light, leading the way for more compact particle accelerators

Modern particle accelerators measure up to several kilometres in size and cost billions of euros. But thanks to a new method they could shrink to less than 10 metres and cost 10 times less in future. To this end, physicists at the Max Planck Institute of Quantum Optics in Garching accelerated electrons directly using a light wave. In the conventional procedure by contrast, particles are accelerated with microwaves. In their demonstration experiment, John Breuer and Peter Hommelhoff obtained an accelerating force that was equally as strong as the force achieved in current conventional particle accelerators. The unique feature of the Garching-based procedure is that it is modular and can be expanded into a multi-level system capable of accelerating charged particles – which could be protons or ions, as well as electrons – around 100 times faster than current systems, and therefore could be built to a much smaller scale. Developmental work is still necessary for this expansion, however.

Continue Reading