The Schwarzschild Radius: Nature’s Breaking Point

How far can you compress something before you reach nature’s ultimate breaking point—that is, before you create a black hole?
Inspired by Einstein’s theory of general relativity and its novel vision of gravity, the German physicist Karl Schwarzschild took on this question in 1916. His work revealed the limit at which gravity triumphs over the other physical forces, creating a black hole. Today, we call this number the Schwarzschild radius. The Schwarzschild radius is the ultimate boundary: We can receive no information from the black hole that lies within it. It is as if a portion of our universe has been cut off.
Continue Reading
high resolution →

The Schwarzschild Radius: Nature’s Breaking Point

How far can you compress something before you reach nature’s ultimate breaking point—that is, before you create a black hole?

Inspired by Einstein’s theory of general relativity and its novel vision of gravity, the German physicist Karl Schwarzschild took on this question in 1916. His work revealed the limit at which gravity triumphs over the other physical forces, creating a black hole. Today, we call this number the Schwarzschild radius. The Schwarzschild radius is the ultimate boundary: We can receive no information from the black hole that lies within it. It is as if a portion of our universe has been cut off.

Continue Reading